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Abstract

IMPORTANCE Accurate prediction of outcomes among patients in intensive care units (ICUs) is
important for clinical research and monitoring care quality. Most existing prediction models do not
take full advantage of the electronic health record, using only the single worst value of laboratory
tests and vital signs and largely ignoring information present in free-text notes. Whether capturing
more of the available data and applying machine learning and natural language processing (NLP) can
improve and automate the prediction of outcomes among patients in the ICU remains unknown.

OBJECTIVES To evaluate the change in power for a mortality prediction model among patients in
the ICU achieved by incorporating measures of clinical trajectory together with NLP of clinical text
and to assess the generalizability of this approach.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 101 196 patients
with a first-time admission to the ICU and a length of stay of at least 4 hours. Twenty ICUs at 2
academic medical centers (University of California, San Francisco [UCSF], and Beth Israel Deaconess
Medical Center [BIDMC], Boston, Massachusetts) and 1 community hospital (Mills-Peninsula Medical
Center [MPMC], Burlingame, California) contributed data from January 1, 2001, through June 1, 2017.
Data were analyzed from July 1, 2017, through August 1, 2018.

MAIN OUTCOMES AND MEASURES In-hospital mortality and model discrimination as assessed by
the area under the receiver operating characteristic curve (AUC) and model calibration as assessed
by the modified Hosmer-Lemeshow statistic.

RESULTS Among 101 196 patients included in the analysis, 51.3% (n = 51 899) were male, with a
mean (SD) age of 61.3 (17.1) years; their in-hospital mortality rate was 10.4% (n = 10 505). A baseline
model using only the highest and lowest observed values for each laboratory test result or vital sign
achieved a cross-validated AUC of 0.831 (95% CI, 0.830-0.832). In contrast, that model augmented
with measures of clinical trajectory achieved an AUC of 0.899 (95% CI, 0.896-0.902; P < .001 for
AUC difference). Further augmenting this model with NLP-derived terms associated with mortality
further increased the AUC to 0.922 (95% CI, 0.916-0.924; P < .001). These NLP-derived terms were
associated with improved model performance even when applied across sites (AUC difference for
UCSF: 0.077 to 0.021; AUC difference for MPMC: 0.071 to 0.051; AUC difference for BIDMC: 0.035 to
0.043; P < .001) when augmenting with NLP at each site.

CONCLUSIONS AND RELEVANCE Intensive care unit mortality prediction models incorporating
measures of clinical trajectory and NLP-derived terms yielded excellent predictive performance and
generalized well in this sample of hospitals. The role of these automated algorithms, particularly
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Abstract (continued)

those using unstructured data from notes and other sources, in clinical research and quality
improvement seems to merit additional investigation.
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Introduction

Patients in intensive care units (ICUs) vary markedly in terms of their likelihood of survival. Models
that predict mortality accurately and that can be easily automated can foster internal quality
improvement, cross-institutional comparisons, and clinical research in the ICU.1-5

Most current ICU mortality modeling methods use a small fraction of the data available on a
patient, primarily the single most abnormal value of laboratory test results and vital signs, and none
of the clinical text. Developed before electronic health records (EHRs) were widely adopted, these
models relied on manual data abstraction and thus had a compelling rationale to limit the data
collected. For example, a manual Acute Physiology and Chronic Health Evaluation (APACHE) medical
record review by a trained nurse takes an average of 30 minutes per patient.6 Although most of this
process can be automated with EHRs,7-9 this approach still predominates in current modeling
paradigms. This process has clear limitations; for example, a brief elevation in heart rate and a
sustained tachyarrhythmia are treated similarly, and a transient reduction in the Glasgow Coma Scale
score resulting from acute alcohol intoxication receives similar treatment as sustained deterioration
from a stroke (eFigure 1 in the Supplement). The increasing adoption of EHRs allows all values of a
variable, such as the Glasgow Coma Scale score, to be used in such models, and thereby allows
patients’ clinical trajectories to be assessed. Doing so may yield more accurate mortality prediction
models, but to our knowledge this hypothesis has not been tested to date.

Another way to take advantage of EHR data is to process the information present in text notes,
including results of the physical examination and assessment. Natural language processing (NLP)
methods enable terms in notes, such as sepsis, pupils fixed, and coagulopathy, to be included in
models.10 However, the possible gains in predictive power afforded by including such terms are
unknown, as is the generalizability of models using this approach. Namely, whether between-
institution differences in documentation patterns could limit how well models incorporating text may
perform at any single institution remains unclear.

Using EHR data from 20 ICUs at 3 hospitals—2 academic medical centers and 1 community
hospital—we developed and validated ICU mortality prediction models incorporating measures of
clinical trajectory derived from all data points associated with a set of laboratory test results and vital
signs. We also used NLP to incorporate words from notes into these models. Finally, we assessed the
external validity of these models when developed at each hospital in our study and then validated
on data from other hospitals.

Methods

Data Sets
In this cohort study, the data used were routinely collected in the process of care delivered in 20 ICUs
across 3 sites from January 1, 2001, through June 1, 2017. The sites included the University of
California, San Francisco (UCSF) and Beth Israel Deaconess Medical Center (BIDMC), Boston,
Massachusetts,11 academic, tertiary care hospitals and Mills-Peninsula Medical Center (MPMC),
Burlingame, California, a 403-bed community hospital. Adult patients (aged �18 years) in medical,
surgical, general medical/surgical, cardiac, and neurologic ICUs were selected. Both UCSF and MPMC
used the same EHR system (Epic Systems Corp), whereas BIDMC data were derived from an
EHR-based research database.11 We selected patients with an ICU stay of at least 4 hours and used
only the first ICU admission during the study period for each patient. Patient demographics and
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discharge disposition were determined from hospital census and admit-discharge-transfer data. This
study was approved by the Committee on Human Research at UCSF and the Sutter Health
institutional review board, which waived the need for informed consent for the use of deidentified
data. Reporting followed the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guideline.12

We chose a set of vital signs and laboratory tests (eTable 1 in the Supplement) used in existing
mortality models, including the APACHE IV, the Mortality Probability Admission Model III,13 and the
Simplified Acute Physiology Score III.14-16 We then developed algorithms to capture from the data all
observations of these variables from the first 24 hours of the ICU admission, as well as all notes
written during this period, which were not deidentified, except those from BIDMC.

Model Development
We developed clinical trajectory models leveraging serial data points for each predictor variable
(eFigure 1 in the Supplement). These models rely on feature engineering algorithms,17 commonly
used in machine learning practice, that process all available observations in the first 24 hours for each
laboratory test result and vital sign and derive measures of clinical trajectory (eTable 2 in the
Supplement). We imputed values of these measures for patients having no observations of a test or
vital sign using the median nonmissing value of each derived measure of trajectory, which we
preferred to multiple imputation methods, owing to computational and implementational
considerations, and to the k-nearest neighbor imputation, which gave comparable performance.

We also sought to enrich these clinical trajectory models with information from clinical notes.
First, we filtered notes to include only the 1000 most frequent terms occurring at each site. Then, we
created a note set for each patient by combining all notes from 24 hours after ICU admission. We
used the term frequency–inverse document frequency algorithm18 to weigh the frequency of each
term in these note sets—such as sepsis or respiratory acidosis or not septic—relative to the proportion
of note sets in which it appears. Thus, more rare terms, such as transfusion or ECMO (extracorporeal
circulation membrane oxygenation), are assigned greater weight compared with more common
terms, such as plan, which appear in nearly every progress note. Furthermore, to address copying
and pasting in notes, we used a sublinear form of term frequency that took the logarithm of the
frequency of a term in a note set, thus yielding diminishing returns for these weights. These weights
were incorporated directly as predictors associated with mortality into our models.

We used logistic regression to model the association between in-hospital mortality and the
measures of clinical trajectory with or without NLP terms. To facilitate interpretation and to guard
against overfitting, predictors were treated as linear for all models. To increase predictive
performance and further reduce the risk of overfitting, we constrained the complexity of the models
using an L2 (or ridge) penalty to control the sizes of the coefficients for the predictors.19,20

Overall, our approach thus differs from existing models in the following 2 ways: (1) by using
information present across all observations of each laboratory test or vital sign to build measures of
clinical trajectory; and (2) by adding variables derived via NLP. To assess the relative contribution of
each step to predictive power relative to a baseline, we built 3 models using data from all 3
participating hospitals. The baseline model used only the maximum and minimum values of each
laboratory test result or vital sign as a surrogate for models using only the most abnormal values. The
second clinical trajectory–augmented model incorporated measures of variability and clinical
trajectory calculated from all observations of these tests and vital signs (eTable 2 in the Supplement).
Finally, the third model combined these clinical trajectory variables with those derived via NLP
of notes.

Model Validation
We undertook 2 strategies to validate these 3 models. First, for each of the 3 approaches, we built 3
separate site-specific models reflecting the case mix and documentation patterns at each site. To
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assess the external validity of each approach, particularly that of using terms derived via NLP, these
site-specific models were then tested at each of the 2 other participating institutions.

Second, because most validation studies of ICU models pool data from institutions to attempt
to build a model that generalizes well across institutions, we similarly pooled data from all 3 hospitals
in our study and performed nested 10-fold cross-validation21,22 to obtain overall estimates of
discrimination and assess the relative contribution of each of the approaches above to overall model
performance. Cross-validation was used over split-sample validation, because in the context of the
bias-variance trade-off,20 it yields performance estimates with lower variance; using nested cross-
validation likewise reduces the bias of these cross-validation estimates.21,22

We assessed model performance by computing the area under the receiver operating
characteristic curve (AUC)23 to evaluate discrimination for each model. Estimates of model
discrimination are reported as the mean AUC across all repetitions of cross-validation. We computed
modified Hosmer-Lemeshow test statistics24 to assess calibration and considered a model well
calibrated if P > .05 for the test statistic.25 In addition, we also computed area under the precision-
recall curve (AUPRC)26 for each of these 3 models.

Finally, we also considered that including these additional variables could introduce bias by
associating mortality with variables measured just before death for those patients who survived less
than 24 hours. For example, terms derived from notes could include expired or CMO (comfort
measures only), which would predict death with certainty, potentially biasing a model as it learns to
associate these terms with mortality and thus crowding out other predictors. Therefore, we
conducted a sensitivity analysis using only patients alive at 24 hours after ICU admission; more detail
can be found in eTable 5 in the Supplement. Analyses were performed using Python (Python
Software Foundation) with the scikit-learn package27 and R version 3.4.3 (R Foundation for Statistical
Computing).

Statistical Analysis
Data were analyzed from July 1, 2017, through August 1, 2018. All comparisons between models were
based on 95% CIs, which correspond to a significance level of .05. A model was judged to be
statistically significantly better performing compared with another if its 95% CI excluded the point
estimate of the other model, and vice versa. These 95% CIs were formed by bootstrapping the
results of 100 repetitions of nested 10-fold cross-validation, which yielded 1000 AUC values for each
model. Unpaired t tests were also used to obtain 2-tailed P values based on these AUC values for each
model, where applicable; in this case, the significance level was also taken to be .05. To assess the
association of derived measures of clinical trajectory with mortality, we also used unpaired t tests
and, where applicable, Wilcoxon rank sum tests.

Results

We extracted data for the first ICU admission of 101 196 unique patients. Mean (SD) age was 61.3 (17.1)
years; 51.3% of patients were male (n = 51 899) and 48.7% were female (n = 49 297). In-hospital
mortality was 10.4% (n = 10 505) (Table 1 and eTable 3 in the Supplement); 14.7% of all deceased
patients died in the first 24 hours after ICU admission.

Across all patients, we retrieved a total of approximately 500 million data points associated
with the types of laboratory test results and vital sign measurements recorded in the EHR within the
first 24 hours after ICU admission. Of these data points, the baseline model used only approximately
5 million, or 1%, but the more complex models used all of them. The baseline models used 48
predictor variables, whereas the clinical trajectory–augmented models used 192, and those further
augmented with NLP used 1192. Missingness rates in our data were generally low, except for
measurements associated with arterial blood gas and lactate levels, and resulted in similar patterns
across the 3 sites (eTable 4 in the Supplement).
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Model Performance
Across all sites, we found that enriching models with NLP-derived terms, variables measuring clinical
trajectory, or both uniformly improved model discrimination, even in the worst case when models
were trained using data from a single site and then tested on another (Table 2). Models trained on
data from one teaching hospital and tested on data from the other exhibited the best performance
(AUC for UCSF to BIDMC, 0.923; AUC for BIDMC to UCSF, 0.897), although performance remained
good for models trained and tested with MPMC data, with AUCs of 0.894 for UCSF to MPMC and
0.854 for BIDMC to MPMC (Table 2). This finding demonstrates the external validity and portability
of models incorporating these variables, even among different types of hospitals (teaching vs
community) where documentation patterns and case mix may vary substantially.

Furthermore, to obtain estimates of performance that most closely correspond to the real-
world use of these models, we pooled data from all 3 sites to cross-validate a new set of models,
adding types of predictive variables in an incremental fashion. First, the baseline model using only the
highest and lowest observed values for each laboratory test result and vital sign achieved a cross-
validated AUC of 0.831 (95% CI, 0.830-0.832) (Table 3). Augmenting this model with measures of
clinical trajectory improved discrimination, as reflected by an increase in AUC to 0.899 (95% CI,
0.896-0.902; P < .001 for AUC difference). Finally, further enriching this model with NLP of clinical

Table 1. Characteristics of the Cohort

Characteristic Value (N = 101 196)
Deaths, No. (%) 10 505 (10.4)

Length of stay, mean (SD) [IQR], d

First ICU 3.5 (4.4) [1-3]

Hospital 11.6 (17.1) [4-13]

Age, mean (SD) [IQR], y 61.3 (17.1) [51-74]

Male, No. (%) 51 899 (51.3)

Age categories, No. (%)

<40 y 12 197 (12.1)

40-59 y 30 567 (30.2)

60-79 y 42 828 (42.3)

>79 y 15 604 (15.4)

Type of ICU at first admission, No. (%)

Combined medical and surgical 32 218 (31.8)

Medical 19 110 (18.9)

Surgical 21 910 (21.6)

Neurologic 14 242 (14.1)

Coronary care 13 716 (13.6)

Abbreviations: ICU, intensive care unit; IQR, interquartile range.

Table 2. External Validation of Models Built on Each Participating Site

Participating Site

Type of Model by Test Site, AUCa

Baseline Modelb Clinical Trajectory–Augmented Modelc NLP-Augmented Modeld

UCSF MPMC BIDMC UCSF MPMC BIDMC UCSF MPMC BIDMC
UCSF NA 0.604 0.838 NA 0.801 0.876 NA 0.878 0.897

MPMC 0.781 NA 0.714 0.823 NA 0.803 0.894 NA 0.854

BIDMC 0.867 0.729 NA 0.888 0.814 NA 0.923 0.857 NA

Abbreviations: AUC, area under the receiver operating characteristic curve; BIDMC, Beth
Israel Deaconess Medical Center; MPMC, Mills-Peninsula Medical Center; NA, not
applicable; NLP, natural language processing; UCSF, University of California, San
Francisco.
a Calculated using nested 10-fold cross-validation. All comparisons of the AUCs for each

train and test pair between models (eg, trained on BIDMC, tested at UCSF for model 1
vs model 2: 0.867 vs 0.888) were statistically significant at P < .05.

b Uses the highest and lowest of all laboratory values and vital signs.
c Adds measures of distribution, variability, and trajectory of laboratory values and vital

signs to models already using the highest and lowest values.
d Adds NLP to models already using all observed values and measures of distribution,

variability, and trajectory of laboratory values and vital signs.
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text increased the AUC to 0.922 (95% CI, 0.916-0.924; P < .001). These NLP-derived terms were
associated with improved model performance even when applied across sites (AUC difference for
UCSF: 0.077 to 0.021; AUC difference for MPMC: 0.071 to 0.051; AUC difference for BIDMC: 0.035 to
0.043; P < .001) when augmenting with NLP at each site. The gains in AUC at each step were similar
to those observed in a sensitivity analysis that revalidated each of these 3 models in a separate cohort
that included only patients alive at 24 hours, implying that the models are insensitive to
measurements recorded immediately before death for patients who died before 24 hours (eTable 5
in the Supplement).

The AUPRCs were 0.265 (95% CI, 0.258-0.272) for the baseline model, 0.434 (95% CI, 0.412-
0.456) for the clinical trajectory–augmented model, and 0.545 (95% CI, 0.532-0.568) for the clinical
trajectory model when augmented with NLP-derived terms. All 3 model AUPRCs were significantly
better than 0.10, which represents the prevalence of the mortality outcome in our sample and thus
the AUPRC value that would have been obtained by chance. At the optimal cut point value, the
sensitivity (recall) and positive predictive value (precision) were 0.623 and 0.312, respectively, for the
baseline model, 0.828 and 0.429, respectively, for the clinical trajectory–augmented model, and
0.941 and 0.573, respectively, for the clinical trajectory model when augmented with NLP-derived
terms. Finally, all models also had nonsignificant modified Hosmer-Lemeshow statistics (C = 12.1, C =
14.3, and C = 15.7, respectively; P > .05), suggesting good calibration, which was confirmed by
examination of the calibration curves (eFigure 2 in the Supplement). The mortality rate among
patients in the top decile of predicted mortality, based on the pooled model, was 92.3%.

Exploration of Clinical Trajectory and Free-Text Predictors: Construct Validity
The models including the derived measures of clinical trajectory (eTable 6 in the Supplement)
appeared to exhibit good construct validity. For instance, we observed that a positive linear trend
(improvement) in a Glasgow Coma Scale score was independently associated with reduced mortality
risk (mean trend for survivors vs nonsurvivors, 0.124 vs −0.034 points/h; P < .001). The same pattern
also held for improvements in individual Glasgow Coma Scale components of eye response (mean
trend for survivors vs nonsurvivors, 0.031 vs −0.012 points/h; P < .001), verbal response (mean trend
for survivors vs nonsurvivors, 0.049 vs −0.016 points/h; P < .001), and to a lesser extent, motor
response (mean trend for survivors vs nonsurvivors, 0.043 vs −0.002 points/h; P = .04). Increasing
levels of bilirubin (mean difference between last and first recorded values for survivors vs
nonsurvivors, −0.035 vs 0.124 mg/dL [to convert to μmol/L, multiply by 17.104]; P < .001), urea
(mean difference between last and first recorded values for survivors vs nonsurvivors, −0.657 vs
0.308 mg/dL [to convert to mmol/L, multiply by 0.357]; P < .001), sodium (mean difference
between last and first recorded values for survivors vs nonsurvivors, 0.345 vs 0.990 mEq/L [to
convert to mmol/L, multiply by 1.0]; P < .001), potassium (mean difference between last and first
recorded values for survivors vs nonsurvivors, −0.074 vs 0.099 mEq/L [to convert to mmol/L,
multiply by 1.0]; P = .002), and lactate (mean difference between last and first recorded values for
survivors vs nonsurvivors, −0.387 vs 0.802 mg/dL [to convert to mmol/L, multiply by 0.111];

Table 3. Model Discrimination for Multicenter Models Using Different Data and Analytic Methods

Modeling Approach AUC (95% CI)a

Using highest and lowest of all laboratory values and vital signs,
logistic regression (baseline)

0.831 (0.830-0.832)

Adding information from all observed laboratory values and vital signsb 0.899 (0.896-0.902)

Adding NLP of clinical textc 0.922 (0.916-0.924)

Abbreviations: AUC, area under the receiver operating characteristic curve; NLP, natural language processing.
a Calculated using nested 10-fold cross-validation; 95% CIs were computed using bootstrapping.
b Adds measures of distribution, variability, and trajectory of laboratory values and vital signs to models already using the

highest and lowest values.
c Adds NLP to models already using all observed values and measures of distribution, variability, and trajectory of

laboratory values and vital signs.
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P = .006), as measured by the differences between first and last values within the first 24 hours after
ICU admission, were each independently associated with increased mortality risk.

Models incorporating clinical free-text terms as predictors also demonstrated good construct
validity. Terms suggesting acutely decompensated states (sepsis, shock, and coagulopathy), the use
of emergent interventions (ECMO or CVVH [continuous venovenous hemofiltration]), or physical
examination signs portending a poor prognosis (pupils fixed, gag [as in gag reflex], and ascites) were
most strongly associated with mortality (Table 4). Terms associated with increased survival included
those indicating surgical status (EBL [estimated blood loss], POD [postoperative day], and OHNS
[otolaryngology–head and neck surgery]), as well as physical examination findings associated with
normal neurologic examination findings (denies [as in, eg, denies pain], awake, or alert) and
extubation (eg, extubated) (Table 4). We found in preliminary experiments that using 2-word phrases
did not appear to improve prediction over the use of single words, although some 2-word phrases
could include negations (eg, not septic). Among the lists of terms extracted for use at each site, we
did not find any that appeared to indicate the event of death or planning for death, for example,
expired or CMO.

Table 4. Examples of Influential Predictive Terms Derived
From Clinical Text

Clinical Term Weighta

Pupils (fixed) 7.78

Gag 6.74

ECMO 6.18

Coagulopathy 4.67

Shock 4.41

Intubated 4.28

PEA 3.68

Chemotherapy 3.49

Ascites 3.27

CVVH 2.78

Sepsis 2.27

Meropenem 2.09

EtOH −1.14

OHNS −1.15

Alert −1.51

EBL −2.10

Diet −2.68

Awake −3.11

PERRL −4.28

Denies (pain) −4.56

POD −4.70

Extubated −7.64

Abbreviations: CVVH, continuous venovenous hemofiltration; EBL, expected
blood loss; ECMO, extracorporeal membrane oxygenation; EtOH, ethanol
(alcohol); OHNS, otolaryngology–head and neck surgery; PEA, pulseless
electrical activity; PERRL, pupils equal, round, and reactive to light; POD,
postoperative day.
a Each term is associated with a β coefficient or weight in the logistic regression

model, which represents its relative association with mortality. Positive
weights indicate increased odds of mortality when the term is included in a
clinical note. Negative weights indicate decreased odds of mortality.
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Discussion

We report the development and validation of 2 generalizable modeling approaches that predict
in-hospital mortality well using the first 24 hours of data after ICU admission. Leveraging newly
available computational power and EHR data enables models to be augmented with measures of
clinical trajectory and NLP-derived terms, which yield the observed gains in predictive performance.
The resulting models appeared to maintain good construct and external validity, despite a varied
case mix derived from academic and community hospitals. Moreover, these approaches can be easily
implemented using open-source machine learning tools. Notably, our approach is distinct from
previous work primarily in that we assess the generalizability of these 2 modeling approaches,
particularly that of using unstructured clinical free text, which, to our knowledge, has not been
validated across institutions.

Our best-performing model achieved an AUC of 0.922 compared with 0.88 reported for
APACHE IV,2 0.85 for the Simplified Acute Physiology Score III,15,16 0.82 for the Mortality Probability
Admission Model III,13 0.85 for physician predictions in a meta-analysis,28 and 0.67 for a recent study
by Detsky et al.29 Although we were not able to compare our models directly with these approaches
on the same patients, augmenting our base model with measures of clinical trajectory and NLP terms
appeared to significantly improve discrimination. Although all models used the same laboratory test
results and vital signs as data sources for predictive variables, the baseline models took advantage of
only approximately 1% of the data points available in EHRs, whereas our clinical trajectory– and
NLP-augmented models used all such data points.

Notably, our models incorporating NLP took advantage of unstructured clinical free text, which
represents a novel data source for risk models. To our knowledge, this is the first study of ICU risk
adjustment to integrate, from multiple hospital systems’ EHRs, variables derived from structured
data (laboratory test results and vital signs) and clinical text into a single model and to assess the
generalizability of such models across institutions. Although for example, clinical free text alone has
previously been used to predict outcomes,10,30 for case finding and registry construction,31,32 or for
information retrieval from EHRs,33-35 it has not been validated across different institutions to
facilitate ICU risk modeling.

Recently, Weissman et al36 studied the feasibility of incorporating clinical free text into a model
to predict the combined outcome of mortality or prolonged length of stay, but their analysis was
limited to a single institution, so they were not able to assess generalizability. Moreover, Weissman
et al36 found only very small marginal gains in predictive performance when using more complex
machine learning methods, namely gradient boosting, over regularized logistic regression, as we
used here.

Rajkomar et al37 developed models incorporating notes to predict in-hospital mortality and
length of stay. However, their study included all inpatients, not just patients in the ICU, and only
assessed model performance within, and not across, each institution in their study, leaving open the
question of the generalizability of their approach. Moreover, their approach extracts predictive
variables from outpatient and other notes not associated with the hospital stay, which has the
potential to introduce bias related to data availability, possibly limiting generalizability.

Recently, Delahanty et al38 also built a model to predict ICU mortality from a multi-institutional
sample. However, they used not just data available during the first 24 hours, but also diagnosis-
related group and cost-weight data from claims, and in fact claims-based variables had the greatest
predictive power in their final model.

Finally, Badawi et al39 also used a multi-institutional ICU data set to develop a similar model.
However, their primary goal was to validate serially computed risk scores throughout a patient’s ICU
stay using data from within the 24 hours before death, not to develop an on-admission risk model.
Furthermore, their approach did not validate predictive variables derived from clinical free text.
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Limitations
Our study has important limitations. We were not able to directly compare our models with, for
example, APACHE IV, owing to the cost of data collection required for a cohort of our size. Instead, to
approximate those models, we developed a surrogate baseline model using minimum and maximum
values of each predictor. It exhibited discrimination comparable to the Simplified Acute Physiology
Score III and Mortality Probability Admission Model III and fell slightly below the values reported for
APACHE IV in the literature. Second, we validated our models using data from only 3 institutions with
20 ICUs, but our sample size of 101 196 patients is similar in magnitude to those in previous model
validation studies.2,8 Third, we found some variation in model performance improvements between
sites, particularly when data from MPMC were used for training and testing.

Moreover, because our models from each site used only the 1000 most common terms
appearing in notes at that site, we were able to determine, by inspection of these terms, that none
were protected health information, such as patient names. Thus, in this instance, simply limiting the
models to the most common terms achieved complete deidentification. Further research would be
needed to confirm whether this finding is typical of text at other institutions and whether more terms
could be used while maintaining generalizability and ensuring privacy.

Although NLP-augmented models appear to generalize well, even between academic and
community settings, their generalizability to any one hospital may not be guaranteed, particularly if
not validated externally. Models using NLP, while potentially more accurate, may also be susceptible
to being gamed by unscrupulous heath care professionals who construct notes in such a way to
inflate predicted mortality risks for their patients. As such models become more widely
disseminated, further research will be needed to characterize the extent of these gaming behaviors
and to develop mitigation strategies, including periodic audits and model recalibration.

Conclusions

Compared with existing methods using only the single most abnormal laboratory test results and
vital signs from the first 24 hours after ICU admission, trends of severity of illness in the ICU can be
quantified, and mortality thus more accurately predicted, by analyzing all the data available in the
EHR and by incorporating information readily extracted from text notes. Clinical trajectory and NLP
models built using these methods can be adapted to EHRs for use by health care professionals and
researchers for a variety of purposes, including risk adjustment in clinical studies and quality
improvement initiatives.
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